Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Evidence-accumulation models (EAMs) are powerful tools for making sense of human and animal decision-making behavior. EAMs have generated significant theoretical advances in psychology, behavioral economics, and cognitive neuroscience and are increasingly used as a measurement tool in clinical research and other applied settings. Obtaining valid and reliable inferences from EAMs depends on knowing how to establish a close match between model assumptions and features of the task/data to which the model is applied. However, this knowledge is rarely articulated in the EAM literature, leaving beginners to rely on the private advice of mentors and colleagues and inefficient trial-and-error learning. In this article, we provide practical guidance for designing tasks appropriate for EAMs, relating experimental manipulations to EAM parameters, planning appropriate sample sizes, and preparing data and conducting an EAM analysis. Our advice is based on prior methodological studies and the our substantial collective experience with EAMs. By encouraging good task-design practices and warning of potential pitfalls, we hope to improve the quality and trustworthiness of future EAM research and applications.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract To accurately categorize items, humans learn to selectively attend to the stimulus dimensions that are most relevant to the task. Models of category learning describe how attention changes across trials as labeled stimuli are progressively observed. The Adaptive Attention Representation Model (AARM), for example, provides an account in which categorization decisions are based on the perceptual similarity of a new stimulus to stored exemplars, and dimension-wise attention is updated on every trial in the direction of a feedback-based error gradient. As such, attention modulation as described by AARM requires interactions among processes of orienting, visual perception, memory retrieval, prediction error, and goal maintenance to facilitate learning. The current study explored the neural bases of attention mechanisms using quantitative predictions from AARM to analyze behavioral and fMRI data collected while participants learned novel categories. Generalized linear model analyses revealed patterns of BOLD activation in the parietal cortex (orienting), visual cortex (perception), medial temporal lobe (memory retrieval), basal ganglia (prediction error), and pFC (goal maintenance) that covaried with the magnitude of model-predicted attentional tuning. Results are consistent with AARM's specification of attention modulation as a dynamic property of distributed cognitive systems.more » « less
An official website of the United States government
